Seguridad de procesos y accidentes mayores: revisión histórica, contexto colombiano y nueva normatividad
Por Johan Andrés García Meneses / Ingeniero Químico / Magíster en Ingeniería Química / Líder Técnico / Gerencia Técnica CCS. A lo largo de la historia, el ser humano ha desarrollado un instinto primitivo por mantenerse a salvo y protegerse a sí mismo. Tal instinto cobró relevancia y estuvo muy presente desde el siglo XIX, durante la revolución industrial, donde se desarrollaron procesos químicos más complejos que representaban amenazas y actividades peligrosas (Mannan, Chowdhury, & Reyes-Valdez, 2012). De hecho, se tiene registro que la seguridad de procesos nace a principios del siglo XIX con E.I. du Pont en Brandywine River (Delaware, Estados Unidos) en su fábrica de explosivos gracias a su preocupación de “entender los peligros con los que vivimos” (Klein, 2009). A pesar de que la idea de seguridad de procesos está presente desde hace más de 200 años, su desarrollo e implementación no ha sido constante y se ha visto afectada por la ocurrencia de accidentes. Con el objetivo de entender realmente el crecimiento de la seguridad de procesos, Mannan et al. (2012) plantea la división de los incidentes y las iniciativas ocurridas en tres espacios temporales: el primero de ellos, comprendido entre 1930 y 1970; el segundo, entre 1970 y 2000; y el último período comprendido entre el 2000 y el presente. El primer período estuvo enfocado en establecer regulaciones. Besserman y Mentzer (2017) presentan un estudio sobre las regulaciones de la seguridad de procesos a nivel global, resaltando en este primer periodo leyes aprobadas en Estados Unidos como la Ley Walsh-Healey para contratos públicos (1936), la Ley de seguridad de minas de carbón (1952), la Ley de seguridad para metales y no metales (1966) , la Ley de construcción de seguridad (1969) y la Ley de salud de minas de carbón y seguridad (1969). El segundo período estuvo caracterizado por la ocurrencia de algunos de los accidentes más impactantes y trágicos (ver tabla 1). Repasando algunos de los más conocidos y cuyas consecuencias han sido significativas no solo en el impacto a las personas y al medio ambiente, sino que han marcado un punto de inflexión para nueva legislación y generación de conocimiento como se podrá observar a continuación: El primero de junio de 1974, en Flixborough, Inglaterra, en una planta de producción de caprolactama una línea baipás presentó una ruptura resultando en la fuga de casi 40 toneladas de ciclohexano que causó una enorme nube de vapor explosiva. Este trágico desastre dejó 28 personas fallecidas. No obstante, existió la posibilidad de que se hubieran presentado más de 500 fatalidades si el desastre hubiera ocurrido en un día de trabajo normal, pero ocurrió un fin de semana. Además, el radio de afectación fue de seis millas alrededor de la planta. Esta explosión significó un punto de partida para el avance de la seguridad de procesos en Reino Unido (Mannan, Chowdhury, & Reyes-Valdez, 2012) El 19 de noviembre de 1984, en una instalación de GLP (Gas Licuado del Petróleo) en San Juan Ixhuatepec (zona metropolitana de Ciudad de México), una falla en una válvula de seguridad de un tanque de almacenamiento de GLP causó una sobrepresión dentro del mismo, rompiendo una tubería. Esto condujo a una fuga seguida de violentas explosiones. Aproximadamente 500 personas murieron y más de 700 resultaron heridas. Este accidente representa la larga lista de explosiones BLEVE (acrónimo inglés de «boiling liquid expanding vapour explosion» que traduce explosión de vapores que se expanden al hervir el líquido). Ciudad de México claramente demostró el riesgo de las BLEVE en instalaciones y las lecciones aprendidas de este evento en particular, han impactado significativamente los estándares de diseño y operación (Mannan, Chowdhury, & Reyes-Valdez, 2012). Hasta el 6 de julio de 1988, Piper Alpha, un campo petrolero que se encontraba a unas 120 millas al noreste de Aberdeen, en Escocia, había estado 12 años en servicio y su principal trabajo era procesar petróleo. Esa noche, una serie de cuatro explosiones a causa de una fuga de gas de alta presión dejó un total de 167 muertos (incluyendo dos rescatistas) y la plataforma totalmente destruida (CCPS, 2012). En la madrugada del 3 de diciembre de 1984 en Bhopal, obreros de Union Carbide India Limited UCIL se encontraban realizando un procedimiento de rutina para la limpieza de la planta —más exactamente lavando con agua una tubería—sin tener en cuenta las medidas de seguridad necesarias. De hecho, olvidaron cerrar los tubos para impedir que el agua ingresara a las cisternas. Debido a la presión, partículas de cloruro de sodio fueron arrastradas de los tubos, las cuales, junto con el agua y el Isocianato de Metilo (MIC) reaccionaron generando mucho calor. Con ello aumentó considerablemente la presión dentro de la cisterna E-610 con más de 42 toneladas de MIC, rompiendo las válvulas y produciendo una fuga inevitable. En poco tiempo una nube cubrió el cielo de la planta y el viento la dirigió hacia zonas residenciales de Bhopal. Este gas se descompuso en fosgeno y cianuro, altamente tóxico para los seres vivos (Castrillón, 2015). Tres días después de la tragedia, el panorama era desolador. De acuerdo con Amnistía Internacional, se calculó que entre 7 mil y 10 mil personas murieron en este lapso y otras 570 mil quedaron expuestas a enfermedades crónicas y graves problemas de salud (Chemical Safety and Hazard Investigation Board). El 24 de marzo 1989, el Exxon Valdez encalló en el arrecife Bligh en Prince William Sound. Llevaba 1,2 millones de barriles de petróleo con destino a Washington. Con el accidente se derramaron 257 mil barriles de petróleo, de los que se recuperaron 17.000. Alrededor de 250.000 aves, 2.800 nutrias, 300 focas, 250 águilas calvas, 22 ballenas y millones de salmones murieron a causa del derrame (Ramos, 2004). En este segundo período, las industrias y muchos gobiernos alrededor del mundo fueron forzados a replantear las tecnologías y los sistemas de mantenimiento desde una perspectiva de seguridad de procesos. La explosión de Flixborough motivó la iniciativa del ACMH (Advisory Committe on Major Hazards); además, introdujo la evaluación de